Российские ученые показали, что прочность композита с алюминиевой матрицей и углеродным волокном зависит от силы связи его компонентов. Оказалось, что, когда прочность границы между ними снижается, устойчивость композита к разрушению, наоборот, увеличивается за счет предотвращения распространения трещин. Математическая интерпретация этого явления, предложенная в работе, позволит прогнозировать свойства подобных композитов, а также расширить область их практического применения. Исследование поддержано грантом Российского научного фонда.
Фото: Иван Водопьянов, Коммерсантъ
В авиа–, машино– и судостроении вместо обычных металлов часто используются композиты, которые состоят из нескольких разных по физическим свойствам компонентов: например, это может быть сочетание металла и неметалла. Такие комбинации придают материалу новые свойства, отличные от тех, что были у составляющих его компонентов по отдельности: это может быть большая прочность, износостойкость, особенные электромагнитные свойства.
Существует множество типов композитных материалов, один из которых — волокнистые. Они состоят из матрицы, то есть основного материала, в который погружены тонкие нити второго компонента, необходимого для укрепления. Роль матрицы могут выполнять полимеры, металлы или керамика. В качестве «арматуры» обычно выступают углеродные, карбидокремниевые, борные или стеклянные волокна. В результате такого сочетания композит приобретает высокую прочность, жесткость, в то же время у него меньше вес, благодаря чему композит может использоваться в силовых конструкциях самолетов, ракет и других летательных аппаратов.
Ученые из Института физики твердого тела им. Ю. А. Осипьяна РАН (Черноголовка) исследовали, как изменяется прочность волокнистого композита при изменении свойств границы между его компонентами. В качестве матрицы авторы использовали сплав алюминия и олова, а армировкой служило углеродное волокно. Углеродные нити протягивали через расплав металлов, подвергнутый ультразвуковой обработке, в результате чего получили композитную проволоку. Свойства границы раздела в композите физики изменяли с помощью нагрева до температуры от 300°С до 600°С. После этого исследовали прочность и характер разрушения полученных образцов.
Микрофотографии поверхности углеродного волокна, извлеченного из композита: (а) в исходном состоянии; (b) после термообработки при 600°С
Фото: Galyshev and Atanov / Metals, 2022.
Оказалось, что по мере увеличения температуры поверхность углеродных волокон покрывалась мелкими кристаллами карбида алюминия. В результате этого прочность границы между компонентами становилась выше, а вот прочность композитной проволоки постепенно снижалась. Сильная связь между компонентами приводит к тому, что, когда в материале при нагрузке возникает трещина, она распространяется только в той плоскости, в которой изначально образовалась. Композит быстро разрушается. Напротив, «слабая» граница препятствует развитию трещины и служит для нее своего рода стопором, и ее распространение происходит по сложной траектории, что позволяет волокну в композите в полной мере реализовать свой потенциал прочности.
«Наше исследование демонстрирует влияние одного из самых важных параметров, определяющих механические свойства композита,— прочности границы. Благодаря интерпретации этих данных нам удалось сделать шаг к созданию математической модели прочности волокнистых композитов с металлической матрицей. Глубокое понимание механики разрушения таких структур подскажет нам, как организовать технологию производства композитов, чтобы в полной мере реализовать их потенциал. В будущем именно этим мы и планируем заняться»,— рассказывает руководитель проекта, поддержанного грантом РНФ, Сергей Галышев, кандидат технических наук, старший научный сотрудник Института физики твердого тела им. Ю. А. Осипьяна РАН.
Использованы материалы статьи.