Сгустки для квантовой информатики
Очень медленное движение атомов повлияло на их свечение
Ученые установили, что свечением атомных структур, охлажденных до минус 273 °С, можно управлять. Так, тепловое движение атомов, даже при экстремально низких температурах, дает дополнительную степень свободы, что можно использовать для управления свечением атомных ансамблей.
Фото: Анатолий Жданов, Коммерсантъ
Полученные данные могут найти применение при разработке ячеек квантовой памяти для квантовых компьютеров, где переносчиком информации служит свет, а в качестве хранителя этой информации выступают атомы. Исследование поддержано грантом президентской программы Российского научного фонда.
Атомные структуры, флуоресценцией — то есть свечением — которых есть возможность быстро и точно управлять, можно использовать для создания ячеек квантовой памяти, которые используются в квантовом компьютере. На данный момент исследователи изучают особенности флуоресценции атомных ансамблей в разных условиях, в том числе при охлаждении до температур, близких к абсолютному нулю (порядка 0,0001 кельвина, или минус 273 °С). В таком состоянии атомы взаимодействуют друг с другом, образуя «сгустки» — атомные кластеры, излучение которых сильно отличается от светимости отдельных атомов. При этом если электроны в атомах такого кластера колеблются синхронно, они создают интенсивное спонтанное излучение, которое можно использовать в квантовой информатике. В обратном случае, если электроны в атомах колеблются асинхронно, излучение оказывается более тусклым.
Зависимость мгновенного времени задержки флуоресценции (величины, обратной к мгновенной скорости флуоресценции) от времени
Ученые из Санкт-Петербургского политехнического университета Петра Великого (Санкт-Петербург) исследовали, как незначительное на первый взгляд тепловое движение влияет на флуоресценцию атомных структур. Авторы рассмотрели атомные ансамбли, охлажденные до минус 273 °С и возбужденные импульсным лазерным излучением. При этом исследователи изучили свечение атомов на трех временных масштабах. Первый — стадия сверхизлучения, во время которой электроны в атомах колебались синхронно и излучали быстро, что сопровождалось высокой интенсивностью света. Второй — стадия пленения света, при которой излученные атомами фотоны — частицы света — рассеивались по среде и могли вторично поглощаться и излучаться. Третий — стадия субизлучения, когда флуоресценция затухала очень медленно.
Исследователи обнаружили, что на всех трех стадиях тепловое движение повлияло на характер флуоресценции по сравнению с идеализированным случаем абсолютно неподвижных атомов. Оказалось, что в ряде случаев нагревание приводит не к ожидаемому ослаблению эффектов сверхизлучения и субизлучения, а, напротив, к их усилению. Так, мгновенная скорость затухания флуоресценции при температуре в районе минус 273 °С отличается в два-три раза по сравнению с модельным случаем абсолютно неподвижных атомов. Полученные данные позволят, незначительно меняя температуру системы, контролировать свечение атомных конгломератов и использовать их для решения проблем квантовой информатики.
«В дальнейшем мы планируем применить разработанную теорию, чтобы описать изменения свечения примесных атомов в твердых телах. Тепловые колебания твердотельных примесей могут оказывать существенное влияние на их флуоресценцию. При этом в данной тематике остается еще немало вопросов, которые требуют более тщательного исследования»,— рассказывает руководитель проекта, поддержанного грантом РНФ, Алексей Курапцев, кандидат физико-математических наук, доцент, ведущий научный сотрудник Санкт-Петербургского политехнического университета Петра Великого.
Подготовлено при поддержке РНФ, использованы материалы статьи.