Гибридный ядерный реактор на тории

Он более безопасный и отличается небольшими размерами

Российские ученые предложили концепцию ториевого гибридного реактора, в котором для получения дополнительных нейтронов применена высокотемпературная плазма, удерживаемая в длинной магнитной ловушке.

Фото: Институт ядерной физики им. Г. И. Будкера СО РАН

Фото: Институт ядерной физики им. Г. И. Будкера СО РАН

Этот проект — результат тесного сотрудничества трех организаций: Российского федерального ядерного центра — Всероссийского научно-исследовательского института технической физики имени академика Е. И. Забабахина, Томского политехнического университета и Института ядерной физики им. Г. И. Будкера СО РАН. От используемых сегодня ядерных реакторов предложенный гибридный ториевый реактор отличают умеренная мощность, относительно небольшие размеры, высокая безопасность при эксплуатации и малый уровень радиоактивных отходов.

«На начальном этапе при помощи специальных плазменных пушек создается относительно холодная плазма, количество которой поддерживается дополнительной подпиткой газом из атомов тяжелого водорода — дейтерия. Инжекция в такую плазму нейтральных пучков с энергией частиц масштаба 100 кэВ обеспечивает образование высокоэнергетичных ионов дейтерия и трития, а также поддержание необходимой температуры. Сталкиваясь друг с другом, ионы дейтерия и трития соединяются в ядро гелия, и происходит выделение высокоэнергетических нейтронов. Такие нейтроны беспрепятственно выходят через стенки вакуумной камеры, где магнитным полем удерживается плазма, поступают в область с ядерным топливом и после замедления поддерживают протекание реакции деления тяжелых ядер, которая служит основным источником выделяемой в гибридном реакторе энергии»,— цитирует пресс-служба Института ядерной физики им. Г. И. Будкера СО РАН главного научного сотрудника института, профессора Андрея Аржанникова.

Основное преимущество гибридного ядерно-термоядерного реактора — одновременное использование реакции деления тяжелых ядер и синтеза легких, что позволяет свести к минимуму недостатки при использовании этих ядерных реакций порознь.

Кроме того, такие реакторы снижают уровень требований к качеству плазмы и позволяют заменить до 95% делящегося урана на торий, который не способен к саморазгону. При этом гибридные реакторы отличаются относительно компактными размерами при высокой мощности и небольшим количеством радиоактивных отходов.

«Гибридная установка состоит из двух частей. Основная — энергогенерирующая часть (бланкет) — представляет собой активную зону ядерного реактора. В ней распределен делящийся материал, входящий в состав ядерного топлива. Благодаря этому возможно протекание цепной реакции деления тяжелых ядер. Вторая часть установки, помещенная внутри бланкета, служит для того, чтобы генерировать нейтроны, которые попадают в энергогенерирующий бланкет. В этой части установки в плазме дейтерия протекают термоядерные реакции синтеза ядер, в которых и образуются нейтроны. Особенностью гибридной установки является то, что та часть установки, в которой идут цепные реакции деления тяжелых ядер — бланкет, во время работы находится в подкритическом состоянии. А обычная реакторная установка при работе на постоянном уровне мощности находится в строго критическом состоянии, которое поддерживается системой управления и защиты»,— объясняет руководитель отделения естественных наук ТПУ и заведующий лабораторией изотопного анализа и технологий ТПУ Игорь Шаманин.

По его словам, за основу бланкета была взята концепция многоцелевой высокотемпературной газоохлаждаемой реакторной установки малой мощности, работающей на ториевом ядерном топливе. Эта концепция разработана в Томском политехническом университете и широко представлена в периодических научных изданиях различного уровня.

«Проекты такого масштаба под силу группам исследователей, объединяющих вузовскую, академическую и отраслевую науку. Такая кооперация обеспечивает синергетический эффект и значительно сокращает путь от идеи до реализации проекта на практике»,— говорит ученый.

Сейчас участники проекта рассматривают возможность создания экспериментального стенда на реакторной площадке ТПУ, который будет состоять из ториевой топливной сборки и нейтронного источника.

«Fuel evolution in hybrid reactor based on thorium subcriticalassembly with open trap as fusion neutron source(computer simulations)»; Andrey V. Arzhannikov, Sergey V. Bedenko, Aleksandr A. Ivanov, Dmitry G. Modestov, Vadim V. Prikhodko, Stanislav L. Sinitsky, Igor V. Shamanin, Vladimir M. Shmakov; журнал Plasma and Fusion Research: Regular Articles, сентябрь 2019 г.

Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...