В России появятся свои литий-воздушные аккумуляторы

Современные Li-ионные (Li-ion) аккумуляторы скоро могут быть вытеснены Li-воздушными. Их разработкой в России занимается резидент Сколково, компания FM Lab.

"Химические источники тока "Li-воздух" давно привлекают внимание потому что литий является сильнейшим восстановителем и он очень легкий, а кислород воздуха — практически бесплатный окислитель. В России работы над этой технологией проводятся на факультете наук о материалах МГУ. В лабораторных условиях созданы эффективные источники тока, и теперь надо лабораторную технологию превратить в полупромышленное производство", — говорит Александр Скундин, доктор химических наук, заведующий лабораторией "Процессы в химических источниках тока" Института физической химии и электрохимии им. А. Н. Фрумкина РАН.

Одна из областей, в которых преимущества Li-воздушных аккумуляторов очевидны — электромобили. Сейчас они питаются от Li-ion батарей, производителям приходится балансировать между их энергоемкостью, весом и ценой. "В самых продвинутых Li-ion аккумуляторах запасается всего 180-190 ватт-часов на кг веса (в 1 кг бензина — около 10 киловатт-часов). Кроме того, Li-ion аккумулятор, способный запасать 1 киловатт-час, стоит больше 1000 долларов", — говорит Даниил Иткис, кандидат химических наук, научный руководитель и член совета директоров компании FM Lab. Предполагается, что Li-воздушные аккумуляторы позволят запасать больше энергии при меньшем весе и меньшей стоимости.

Сейчас прототипы российских аккумуляторов запасают около 1 киловатт-часа на 1кг веса, а к 2013 году ученые из FM Lab планируют собрать образец, способный запасать 10 киловатт-часов на 1кг.

Как работает аккумулятор

Литиевые аккумуляторы, как и все химические источники тока, работают за счет окислительно-восстановительной реакции. При взаимодействии пары "окислитель-восстановитель" вещество-окислитель забирает у восстановителя электроны. В батарейках анод состоит из окисляемого вещества, восстановителя, катод — из вещества-окислителя, между ними электролит — органическая жидкость. Окислитель забирает у атомов восстановителя электроны, образовавшиеся ионы проходят через электролит и присоединяются к окислителю, электроны же по внешней цепи подаются на требующее питания устройство.

Чем активнее окислитель и восстановитель, тем эффективнее батарея. В качестве анода используют литий, он обладает самым большим электродным потенциалом (-3 вольта). Литий же — самый легкий металл, что уменьшает вес аккумулятора. Катод в Li-ion аккумуляторах делают из сильных окислителей, например из оксида кобальта.

Когда в ходе реакции от атомов лития отсоединяются электроны, образуются положительные ионы (Li -> Li+ + e-). Они проходят через электролит и оседают на положительном электроде. Когда весь литий в виде ионов осел на катоде, аккумулятор разряжен. При зарядке процесс идет в обратном направлении — электроны двигаются от катода к аноду, ионы лития оседают на аноде, где насыщаются электронами и становятся нейтральными атомами.

Литиевые деревья

Изначально аноды Li-ion аккумуляторов делали из чистого лития, однако такие батареи небезопасны. При зарядке литий оседает не ровными слоями, а в виде дендритов — со временем эти "деревца" прорастают сквозь электролит до катода, происходит короткое замыкание с выделением тепла, электролит загорается. Чаще всего батареи вздуваются, но могут и взрываться. Сейчас батарейки с чистым литием ставятся в кварцевые часы, они не перезаряжаемые.

В 90-м году инженеры компании Sony первыми поменяли чистый литий на графит, насыщенный литием. С тех пор в ходе зарядки литий оседает между слоями графита, и роста дендритов не происходит. "С одной стороны, решилась проблема безопасности, но с другой — емкость 1г Li-насыщенного графита составляет 300 миллиампер-часов, а емкость 1г чистого лития — 3800 миллиампер-часов", — говорит Иткис. Поэтому в Li-воздушных аккумуляторах будет использоваться чистый литий, а проблема его равномерного оседания при зарядке решится за счет применения новых электролитов, разрабатываемых самой FM Lab.

Полимерный электролит

По словам Александра Скундина, "одна из сложностей заключается в совмещении работы воздушного электрода с литием — воздух содержит влагу, которая мешает нормальному протеканию окислительно-восстановительной реакции". Вода связывает атомы лития, не давая им распадаться на ионы и электроны (Li + H2O -> LiOH + H2). Решено это было разделением аккумулятора на две камеры. В одной, герметичной, находится литиевый анод. Вторая камера сообщается с внешней средой, в нее поступает воздух. Поскольку герметичность Li-ion аккумуляторов была продиктована не в последнюю очередь испаряемостью самого электролита, в FM Lab решили использовать вместо органической жидкости тонкую твердую пластину — она и обладает свойствами электролита, и обеспечивает герметичность камере с анодом. "В первых разработках мы использовали стеклокерамические пластинки (Li-Al-Ge-P-O). Толщина такого электролита должна быть не более 100 микрометров — иначе ионы лития будут просто осаждаться в пластине, не доходя до катода. При такой толщине стеклокерамика очень хрупка, кроме того, производственный процесс очень дорог. Поэтому сейчас мы активно работаем над созданием полимер-керамических пластин — хорошо проводящих твердых газоплотных электролитов, которые можно будет хоть в рулоны сворачивать без угрозы повреждений", — сообщил Иткис.

Катод — губка с обдувом

Катод Li-воздушного аккумулятора размещается снаружи, это углеродная губка — легкая структура с множеством сквозных пор, которая наполняется кислородом. Кислород притягивает электроны лития и вбирает его ионы сквозь электролит, внутри губки образуется твердый осадок (O2 + 2Li+ + 2e- -> Li2O2), который разлагается при зарядке аккумулятора — электроны двигаются в обратном направлении, ионы лития возвращаются в пластину-электролит, а атомы кислорода — во внешнюю среду. То есть Li-воздушные аккумуляторы возвращают кислород в атмосферу и не выбрасывают вредных веществ.

Есть иная сложность — воздух содержит множество посторонних элементов, способных нарушить реакцию в губке. Например углекислый газ, вступая в реакцию с осадком (Li2O2 + CO2 -> Li2CO3 + O2), или та же влага (Li2O2 + H2O -> LiOH + O2) связывают осадок, и он уже не может распадаться на электроны, ионы лития и кислород, заряжать аккумулятор не получается. Разработчики считают, что кислород должен поступать в губку либо в чистом виде из баллонов, либо с воздухом, прошедшим через системы фильтрации. При использовании Li-воздушной батареи в электромобиле подразумевается обдувка катода потоком фильтрованного воздуха — под капотом уже нет огромного двигателя внутреннего сгорания, так что найдется место для воздухофильтров. "Это изящное решение, так как поток воздуха обеспечит также и охлаждение аккумулятора", — считает Иткис. Решения же проблемы в случае с питанием портативных устройств разработчики пока не достигли.

Илья Арзуманов

Александр Скундин, доктор химических наук, заведующий лабораторией Института физической химии и электрохимии им. А. Н. Фрумкина РАН

Создавать у нас производство Li-ion аккумуляторов, то есть повторять то, что делается в Юго-Восточной Азии, не очень целесообразно. А идея сделать аккумуляторы с более высокими показателями вполне разумна — сейчас есть возможность создать в России производство Li-воздушных аккумуляторов. Они будут вполне конкурентоспособны.

Li-воздушные аккумуляторы могут использоваться везде, где используются Li-ion. Однако прежде чем ставить их на электромобили, все-таки наладят производство маленьких аккумуляторов для портативных устройств.

Даниил Иткис, кандидат химических наук, научный руководитель и член совета директоров компании FM Lab

То, как мы используем нефть в транспорте — кощунство. КПД современных ДВС примерно 40%. При этом в автомобиле всегда есть трансмиссия, в каждом из узлов которой происходят дополнительные потери. Общая эффективность ДВС не превышает 20%. КПД электродвигателей более 90%, и ему не требуется трансмиссия, коробка передач просто отсутствует. Современные концепции электромобиля — например, когда мотор встроен в колесо — подразумевают общую эффективность порядка 90%. Таким образом, используя электродвигатель, можно вчетверо повысить эффективность использования энергии.

Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...