Металлический водород — ключ к новой энергетике

Комнатная сверхпроводимость в гидридах редких металлов становится возможной

В физико-химической среде ведущих научных центров мира вдохновенно обсуждается возможность создания сверхпроводников, работающих при комнатной температуре. Это открывает колоссальные возможности в электротехнике и энергетике. По мнению академика РАН, директора Института высоких давлений РАН Вадима Бражкина, возможно, одна из ближайших Нобелевских премий будет именно за это.

Фото: Getty Images

Фото: Getty Images

Виктор Стружкин (научный сотрудник Center for High Pressure Science and Technology Advanced Research, Shanghai, Китай) объяснил «Ъ-Науке» физическую природу явления: «Гидриды могут иметь очень высокие температуры сверхпроводимости из-за того, что легкие атомы водорода (H) имеют очень высокие частоты колебаний, что в рамках фононного механизма сверхпроводимости, описываемого классической теорией Бардина—Купера—Шриффера, приводит к высоким значениям температуры сверхпроводмости. Однако, как было отмечено Ашкрофтом (Ashcroft), важно «сплавить» металлический водород с другими элементами. Именно эта концепция металлического сплава, содержащего высокую концентрацию металлоподобных атомов водорода, и сыграла решающую роль в открытии новых супергидридов с высокой температурой сверхпроводимости».

Старший научный сотрудник Института ядерных исследований РАН и завсектором физики высоких давлений Института кристаллографии ФНИЦ «Кристаллография и фотоника» РАН Александр Гаврилюк пояснил специально для “Ъ-Науки” вопрос о сверхпроводимости полигидридов редкоземельных элементов La, Y и Ce: «История комнатной сверхпроводимости идет от проблемы металлического водорода, которая состоит в предсказании того факта, что водород при сильном сжатии должен перейти в металлическое состояние, и не просто в металлическое состояние, а в состояние сверхпроводника с температурой сверхпроводимости много больше комнатной температуры. Но и это еще не все; это состояние может быть метастабильным. То есть эта фаза может сохраниться даже при сбросе давления до атмосферного и остаться при этом металлической и сверхпроводящей при температуре выше комнаты. Вот в чем прелесть, есть надежда получить материал с уникальными свойствами сверхпроводника при нормальных условиях.

После того как эта задача была сформулирована, были предприняты грандиозные усилия по развитию и совершенствованию техники высоких давлений и экспериментальных методик, которые можно применить для исследования веществ в этих экстремальных условиях. Были разработаны камеры высокого давления с алмазными наковальнями, отработаны методики зарядки образцов и достижения как можно более высоких давлений. На сегодняшний день достигнуты давления порядка 6 Мбар. Но размеры образцов при таких давлениях чрезвычайно малы — несколько микрон, и практически никакие экспериментальные методики при этом невозможно применить.

К 2012 году стало понятно, что если чистый водород и можно «задавить» в металл, то это будет при давлениях не меньше 4,6 Мбар. Тогда появились разные идеи, как понизить давление перехода. Один из подходов заключается в том, чтобы сжимать не чистый водород, а водород с примесными атомами, которые привносят так называемое химическое давление в эту смесь за счет своих электронных оболочек. В результате вы имеете много водорода и мало примесей, но при этом система как бы уже предварительно сильно сжата за счет взаимодействия с электронной системой примесных атомов («химическое давление») и вам нужно только немного добавить обычного внешнего давления, чтобы окончательно осуществить фазовый переход водорода в металлическое состояние. Вот грубо в чем смысл. Конечно же, корректная картина гораздо сложнее, нельзя разделять отдельно водород и отдельно примесные ионы — это единая сложная квантово-механическая система. Но грубый смысл примерно такой.

История открытия сверхпроводимости с рекордными значениями ее температуры началась в 2015 году с открытия сверхпроводимости в гидриде серы SH3 при очень высоких давлениях P~1,5 Мбар (1 Мбар = 1 млн атмосфер) с рекордной на то время температурой перехода Tc ~ 203 K. Это существенно превышало предыдущий рекорд в классических высокотемпературных сверхпроводниках (ВТСП) на основе купратов. Наша группа принимала непосредственное участие в этом событии, а именно мы экспериментально подтвердили сверхпроводимость в SH3 по эффекту экранирования магнитного поля материалом сверхпроводника. В 2019 году были экспериментально открыты переходы в сверхпроводящее состояние в полигидриде лантана LaH10 (Tc~250–260 K) и в полигидриде иттрия YH6 (температура сверхпроводимости ~221 K) также при очень высоких давлениях 1,5–1,7 Мбар. Что подтвердило теоретические предположения о возможности очень высоких величин Tc в этих материалах. Дальнейшее развитие событий — обнаружение сверхпроводящего состояния в тройном соединении S-C-H с температурой сверхпроводимости ~ 14 C (14 градусов Цельсия, а не Кельвина, то есть существенно выше температуры замерзания воды) в 2020 году при давлении выше 2 Мбар. Это уже практически комнатная сверхпроводимость. Энтузиазм в научной среде очень большой, работ, как экспериментальных, так и теоретических, можество, но пока данные исследования носят в основном фундаментальный характер, так как практическое использование сверхпроводника стабильного при таких сверхвысоких давлениях (1,5–2,5 Мбар) маловероятно. Тем не менее этими работами экспериментально доказано, что сверхпроводимость существует при температурах, близких к комнатной. Примерно понятны кристаллические структуры, в которых она существует, и механизм ее стабилизации. Осталось воспроизвести материал с похожей кристаллической и электронной структурой при нормальном давлении».

Профессор «Сколково» Артем Оганов также отметил, что «эти сверхпроводники требуют очень высоких давлений и технологически малоприменимы». Виктор Стружкин также пока не видит перспектив у практического применения новых сверхпроводящих гидридов.

Однако если исследователи найдут в ближайшее время гидриды, которые в метастабильном состоянии и при атмосферном давлении будут демонстрировать комнатную сверхпроводимость, это откроет широкие перспективы к коммерческому применению комнатной сверхпроводимости в народном хозяйстве.

Владимир Тесленко, кандидат химических наук

Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...
Загрузка новости...